To calculate the kinetic energy of ejected electrons, use the free Photoelectric Effect Calculator. To obtain the answer in a fraction of a second, simply enter the incident light frequency and threshold frequency and press the calculate button.
The photoelectric effect occurs when incoming light strikes a metal surface, causing photoelectrons to be emitted. The light frequency that is incident on it affects the emission of photoelectrons and kinetic energy.
The maximum kinetic energy of released electrons can be calculated using the formula KE = h. (f - f0)
f = (KE/h) + f0
f0 = h(f - KE)
The minimum frequency of incident radiation below which photoelectric emission is not possible is known as the threshold frequency.
The steps for calculating the photoelectric effect are described below. To get the result, go through these procedures and follow them.
The photoelectric effect has three important requirements, which are as follows.
The photoelectric effect is described in such a way that it appears to be very theoretical, although it has numerous practical uses. For example, photoelectric cells are used to detect light (in photoelectric sensors) or to collect the ensuing electron current (in solar cells). There are also the following applications
Question 1: The threshold frequency in a photoelectric effect experiment is 200 Hz, while the incoming light frequency is 250 Hz. Determine the emitted electrons' maximum kinetic energy.
Given:
Threshold frequency f0 = 200 Hz
Incident light frequency f = 250 Hz
Maximum kinetic energy of emitted electrons is KE = h(f - f0)
KE = 6.626 x 10^-34(250 - 200)
= 6.626 x 10^-34(50)
= 3.313 x 10^-32
Hence, the kinetic energy is 10^-32 eV.
1. What exactly is the photoelectric effect?
The photoelectric effect is the process of metals emitting electrons when exposed to proper frequency light, and the released electrons are photoelectrons.
2. What are some of the photoelectric effect's applications?
In solar panels, the photoelectric effect can be employed to create power. Motion and position sensors, as well as X-ray photoelectron spectroscopy, utilise it. In burglar alarms, photoelectric cells are utilised. Photoelectric sensors will be used in digital cameras to record and detect light.
3. What elements have an impact on the photoelectric effect?
The frequency and intensity of incident radiation, as well as the potential difference between metal plates and collectors, are all elements that influence the photoelectric effect.
4. How do you calculate the photoelectric effect?
KEe = hf - BE is the maximal kinetic energy of expelled electrons (photoelectrons), where hf is the photon energy and BE is the electron's binding energy (or work function) to the particular material.